
UCRL-PROC-209017

autokonf - A Configuration Script
Generator Implemented in Perl

J. F. Reus

January 14, 2005

NECDC 2004
Livermore, CA, United States
October 4, 2004 through October 7, 2004

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

Proceedings from the NECDC 2004

Reus, J. F.

autokonf

A Configuration Scr ipt Generator Implemented in Per l (U)

James F. Reus

reus@llnl.gov

Lawrence Livermore National Laboratory, Livermore, CA 94551

This paper discusses configuration scripts in general and the scripting
language issues involved. A brief description of GNU autoconf is provided
along with a contrasting overview of autokonf, a configuration script
generator implemented in Perl, whose macros are implemented in Perl,
generating a configuration script in Perl. It is very portable, easily
extensible, and readily mastered. (U)

Introduction
The usefulness of a software package is not simply a matter of how well it solves a

particular problem, its efficiency or its reliability. An important factor is how well it ports
to a new site or to new or different hardware. If the package is difficult to build on a
platform of interest then its usefulness is diminished. For example ALE3D is an
engineering/physics code that may be configured to use a number of external solver
packages: libraries tailored to the solution of systems of equations. If ALE3D is to use a
particular solver then the solver library must be easily built and installed on all of the
platforms supported by ALE3D. All additional libraries required by this solver package
must also be easily built and installed. ALE3D itself must itself be easily configured to
use this solver package if it is needed and can be built and installed. A solver package that
is not portable or is difficult to build and install will have limited use with the code at
best.

Libraries have particular configuration needs not generally faced by applications. For
an application to be useful, the end user only cares that it can be built and installed
properly. Users of libraries are generally application developers. They not only care that
the library can be built and installed, but also the details of how was it built: 32- or 64-bit,
debug or optimized. If it is a C++ library, it is important to know which compiler was
used. For a library to be usable it must be compatible with not only the compiled
application code, but also every other library used to form the application. The
configuration process for libraries must allow for the configuration-time specification of
all of these important factors.

Proceedings from the NECDC 2004

Reus, J. F.

Background
The process of building and installing a software package from source generally

proceeds in the following fashion:

1. Unwrap - The distribution is unwrapped in a temporary working area. Most
open source software is distributed in the form of a “ tarball” : a directory tree
that was collected into a single file using an application such as tar, and
compressed using an application such as gzip.

2. Configure - A setup or configuration script is run. This identifies the details of
the target system, how source code is to be compiled, and which compilers are
to be used. The availability of, and location of, other software packages that
are required is specified or detected. Other details such as the enabling of
optional features, may be done with command line options.

3. Make - The software package is constructed. Each of the source files is
compiled, libraries are assembled and executables are formed. This is
generally choreographed with a utility such as make or build.

4. Install - The software package is installed. Administrative rules at different
sites may require different installation locations so the installation directory
must be a configurable parameter. As with the previous step, the installation
process is typically controlled by make or build.

These steps form the classic unwrap-configure-make-install cycle. Of particular
interest in this paper is the second step: configuration.

Most open source software packages use a configuration script to analyze the target
system hardware and software and adjust or generate makefiles and header files to suit the
detected or specified system environment. Unfortunately, some important mathematical
and scientific software packages handle the configuration step by requiring the person
performing the installation to edit makefiles or make include files, uncommenting
appropriate sections or inserting the required information as desired. Other packages
require the installer to select from a list of known configurations. New platforms or
environments may require a new configuration file to be developed.

Considerable effort may be required to produce configuration scripts that:

• Detect hardware characteristics such as processor type, data size and
alignment, byte ordering and numeric precision.

• Detect software characteristics such as the host operating system type and
version. Is threading supported? Is the file system case sensitive?

Generally the processor type, operating system type, and version constitute
the “platform” type.

• Detect the host name and domain.

Generally the host name and domain constitute the “site” .

Proceedings from the NECDC 2004

Reus, J. F.

• Decide which compilers are to be used and the language features supported.
Use GNU or vendor compilers? Which compiler version? Is 64- or 32-bit code
to be generated?

C++ code compiled with one compiler is generally incompatible with code
compiled with a C++ compiler from a different vendor. Sometimes
different versions of a C++ compiler may produce incompatible code.

• Determine if the compiler supports required language features. Does the C
compiler support a Boolean type? Is long long supported? Does the C
compiler support new style ANSI headers?

• Detect the existence and location of header files and libraries of interest.
Where is SILO installed? Is HDF5 available?

Note that a specific version of a library may be important. Code that was
compiled with the header file of one version of a library is frequently
incompatible with code compiled with the header file of another.

• Detect the number of processors available. Does the system support a “switch”
allowing for fast parallel communication?

• Provide mechanisms for the application of parameters appropriate to the site
and platform type.

• Permit overriding detected characteristics such as using a configuration-time
specified compiler set rather than the detected set.

This is particularly important for libraries which may have to be built and
installed using several compilers. Also note that certain tools such as
debuggers may require the code to be built with certain compilers.

• Allow certain optional features to be enabled or disabled at configuration time.
Is the package to be built parallel or serial, debug or production? Are design-
by-contract features such as pre- and postcondition checks to be enabled?

• Support the configuration-time specification of the location of headers and
libraries for other software packages.

• Generation of header files containing configuration specific information and
the insertion of additional configuration information in makefiles1.

All important system hardware characteristics and software features should be
automatically detected unless an appropriate site-specific file specifies the characteristic
or a configuration-time override is supplied. Most importantly every software package
should be configurable to use specific compilers and options, to use particular versions of
headers and libraries found at indicated locations, and in the end to be installed in
specified directories.

Implementing such a setup or configuration script can be a project in its own right.

1 This is frequently done by translating files such as makefile.in to makefile by substituting notations resembling
@NAME@ with a string appropriate to a detected or specified characteristic.

Proceedings from the NECDC 2004

Reus, J. F.

GNU autoconf
Rather than going to the considerable effort to write such complex configuration

scripts, the authors of many open source software packages use GNU autoconf to
generate configuration scripts. This tool relies on the fact that most functions of a
configuration script are common to all software packages, only differing in detail. GNU
autoconf takes a configuration specification file as its input, and generates a configuration
script as its output.

Fig. 1

The input specification file2 is, in theory, a list of characteristics, features and external
packages that are of interest. In reality, it is a text file containing a mix of shell code and
macro references (the tests) that are used to generate the desired output configuration
shell script3. Note that the autoconf utility is actually a fairly small Bourne-shell script
that simply hands-off the real work to the GNU m4 macro processor.

GNU autoconf has been quite successful and is used by many open source projects in
the Linux/UNIX community. It has an extensive library of macros4, it generates a Bourne-
shell script and many developers in the Linux/UNIX community are familiar with
Bourne-shell scripting.

2 A GNU autoconf specification file is generally named configure.in.
3 GNU autoconf generally produces a Bourne-shell script named configure as its output.
4 GNU autoconf macros are used to implement the various tests used to detect hardware and software system
characteristics that are of interest.

Script file (sh)

Macro library (m4)

Specification file

m4

autoconf (sh)

Proceedings from the NECDC 2004

Reus, J. F.

While the use of autoconf to generate configuration scripts is a great improvement
over selecting/editing makefiles or handwriting configure scripts, it has a number of
shortcomings:

• GNU autoconf macros are wr itten using m4
GNU m4 is a powerful macro processing language but few developers are
fluent in m45. Software package developers end up implementing new tests as
shell code rather than implementing new macros. For example only 101 of
1461 lines (7%) of SILO’s configure.in file actually contain autoconf macros.
Much of the remainder is handwritten shell code implementing new tests.

• GNU autoconf generates a UNIX-centr ic configuration scr ipt
The configuration script generated by autoconf is in implemented in Bourne-
shell. While every UNIX-like platform supports this shell dialect, the Bourne-
shell is not generally found on non-UNIX platforms such as Windows. Even
then, Bourne-shell interpreters ported to Windows platforms have not been
completely successful and frequently have problems when dealing with large
complex scripts. Such Bourne-shell interpreters frequently have trouble
dealing with the command line requirements of native Windows utilities6.
Software package developers often resort to using GNU autoconf to generate a
configuration script for UNIX-like platforms and a separate project file for
windows platforms.

• Little platform- or site-specific support
Developers generally resort to handwritten shell code to deal with platform-
and site-specifics.

The fundamental difficulty with GNU autoconf is its reliance on the Bourne-shell.
The Bourne-shell scripting language lacks the necessary internal features to permit the
configuration script to easily stand on its own. It relies on additional external utilities to
do much of the necessary work. Availability of these utilities cannot be depended upon
outside of the family of UNIX-like platforms and must be installed as a prerequisite7.
Even among the various UNIX and Linux environments where such external utilities may
be found, they often differ in detail, have different options and frequently handle
borderline cases in different fashions.

5 GNU autoconf actually requires GNU m4. While this dialect of m4 isn’ t massively different from the standard, it has
some subtle semantic differences and extensions required by autoconf.

6 Native Windows utilities generally use the forward slash (/) as an option indicator and the backslash (\) as a
pathname component separator. This doesn’ t generally work well with the Bourne-shell, which uses the backslash as
an escape character.

7 Many of these utilities are available for Windows-like platforms as components of the open source cygwin project.

Proceedings from the NECDC 2004

Reus, J. F.

There are several desirable characteristics of a configuration script generator:
1. The generator should be implemented using a popular language. This language

should be well suited to simple parsing and script code generation.
2. The configuration script language should have wide operating system and

hardware support.
3. The configuration script should limit its reliance on additional utilities. The

language used should supply the necessary operations as intrinsics.
4. The script generator and the generated script should be the same language.

While not a requirement, this can simplify the implementation and
maintenance.

Scr ipting Languages
When generating a configuration script there is a choice of scripting languages

available. There are several characteristics that are needed: broad user base, portability,
and powerful intrinsic operations. An obscure language may be ideal from a simply
implementation basis but would be a poor choice as most potential users would face
additional training. To maximize the size of this population, a popular scripting language
should be chosen such as: Bourne-shell, C-shell, Perl, Python, or Visual Basic (VB).

Both Bourne-shell and C-shell are UNIX-centric and generally lack the intrinsic
operations needed for this task. They depend largely on additional utilities such as cp, mv,
rm, sed or test to do real work. Visual Basic has the necessary powerful built-in
operations but is limited to Windows-like platforms.

To achieve wide portability and broad developer base the choice is rather limited: Perl
or Python. Both Perl and Python are well known and supported by a broad range of
operating systems and hardware. They both have powerful intrinsic operations and don’ t
rely on additional external utilities to do the needed work. Perl is of particular interest
since it is well designed for parsing, is easily generated8, and is very widely available due
to its popularity with those that write web CGI scripts.

Unfortunately the implementation of GNU autoconf makes generation of a Perl script
quite difficult. All of the macros are implemented with Bourne-shell generation in mind.
Since in practice GNU autoconf is really just its macros, modifying GNU autoconf to
generate Perl would actually be a re-write. Tempting, but there is another problem: the
input specification files used by GNU autoconf are actually Bourne-shell code with
embedded autoconf macro calls.

The connection between GNU autoconf and the Bourne-shell is quite difficult to
break.

8 Python has interesting code formatting requirements that can make code generation, particularly through macro
expansion, rather difficult.

Proceedings from the NECDC 2004

Reus, J. F.

Autokonf - An Alternative
Like GNU autoconf, autokonf is a configuration script generator. It is used in much of

the same way: it takes a configuration specification file as its input and using a macro
expansion process it generates a configuration script as its output.

Fig. 2

Normally autokonf expects to be given a specification file named konfigure.in and

will generate a script file named konfigure. These names were chosen to permit
coexistence with the input and output file names used by GNU autoconf but if given an
input specification file named configure.in autokonf will generate a script file named
configure.

Autokonf is implemented in simple Perl with no reliance on specialized modules. The
input specification file is Perl with embedded macro references. The generated
configuration script is in Perl using no specialized modules. The result is a very portable
system; Perl runs everywhere, with no need for a special environment such as Cygwin or
MKS for Windows-like platforms.

New Features
Autokonf provides a number of important features:

• A hierarchical approach is used when searching for both site and platform
specific files.

• Improved hardware detection. For example the generated configuration script
can distinguish between Pentium 3 and 4 processors.

• A mechanism to control the compiler names and order the generated
configuration script is to try using. For example some applications might
prefer to use GNU compilers if available but others might prefer commercial
compilers. Note that this is specified independently for each language.

• Search paths to consider when looking for packages.

autokonf (Perl) Script file (Perl)

Macro library (Perl)

Specification file

Proceedings from the NECDC 2004

Reus, J. F.

Implementation Details
The autokonf script reads the input specification file scanning it for macros. The

parsing process is simplified by a simple rule:
All autokonf macros are upper case identifiers that start with AK_.

The configuration script is scanned in multiple passes. The first pass looks for and
extracts argument processing and section macros.

All argument processing macros start with AK_ARG_.

All section macros start with AK_SECTION_.

Argument Processing Macros
Argument processing macros are handled in a rather special fashion, as they are not

expanded in place. Rather they are removed from where they are found and additional
argument processing code is inserted at the appropriate place in the generated script file.
Similarly the section macros are not expanded in place but simply partition the text into
regions that indicate where the subsequent code is to land in the generated script. The
following argument processing macros are currently supported:

AK_ARG_ENABLE(“ feature” , “ help string”) ;
AK_ARG_DI SABLE(“ feature” , “ help string”) ;
AK_ARG_WI TH(“ package” , “ help string”) ;
AK_ARG_WI TH(“ package=[pathname, …] ” , “ help string”) ;
AK_ARG_WI THOUT(“ package” , “ help string”) ;
AK_ARG_WI THOUT(“ package=[pathname, …] ” , “ help string”) ;

The AK_ARG_ENABLE and AK_ARG_DI SABLE macros are used to create feature control
options in the configuration script: - - enabl e- feature, which is used to enable some
feature, and –- di sabl e- feature, which is used to disable some feature. Some popular
features include: debug, production, parallel, serial, shared, and/or static. Note that the
AK_ARG_ENABLE and AK_ARG_DI SABLE macros have some interesting properties as the
order of specification can control default behavior of the generated configuration script.
For example, the following konfigure.in fragment:

AK_ARG_DI SABLE(“ shar ed” , ” Pr oduce st at i c l i br ar y. ”) ;

with no corresponding AK_ARG_ENABLE(“ shar ed” , …) reference not only results in a
configure script that supports an –- di sabl e- shar ed option but also has the “shared”
feature enabled by default. If both macros are used, then the order indicates the default:

AK_ARG_DI SABLE(“ shar ed” , ” Pr oduce st at i c l i br ar y. ”) ;
AK_ARG_ENABLE(“ shar ed” , ” Pr oduce dynami c l i br ar y. ”) ;

then a script is produced that supports both –- di sabl e- shar ed and –- enabl e- shar ed
options and has the “shared” feature enabled by default. However if the order is reversed:

AK_ARG_ENABLE(“ shar ed” , ” Pr oduce dynami c l i br ar y. ”) ;
AK_ARG_DI SABLE(“ shar ed” , ” Pr oduce st at i c l i br ar y. ”) ;

then the “shared” feature will be disabled by default. In summary: The first
AK_ARG_ENABLE or AK_ARG_DI SABLE macro for a particular feature sets the default state

Proceedings from the NECDC 2004

Reus, J. F.

of the feature to the opposite condition. If AK_ARG_ENABLE for a particular feature is
encountered first, then the feature is disabled by default, but if the AK_ARG_DI SABLE
macro is encountered first, then the feature is enabled by default.

The AK_ARG_WI TH or AK_ARG_WI THOUT macros operate in a similar fashion: The first
AK_ARG_WI TH or AK_ARG_WI THOUT macro for a particular package sets the default state of
the package to the opposite condition. . If AK_ARG_WI TH for a particular package is
encountered first, then by default the package will not be used, but if the
AK_ARG_WI THOUT macro is encountered first, then by default the package will be used.

The “default” behavior of the AK_ARG_ENABLE, AK_ARG_DI SABLE, AK_ARG_WI TH and
AK_ARG_WI THOUT macros may seem backwards but it does make sense. For example, if
you provide for an –- enabl e- feature option using an AK_ARG_ENABLE option but didn’ t
use AK_ARG_DI SABLE to provide for a –- di sabl e- feature option, then the user of the
configuration script has a way to enable the feature but no way to disable it, so it makes
sense to have it disabled by default.

Section Macros
Section macros are used to locate subsequent code at certain points in the generated

configuration script. The following section macros are currently supported:

AK_SECTI ON_EPI LOG;
AK_SECTI ON_PROLOG;
AK_SECTI ON_TESTS;

Prolog code is performed early in the configuration processes, after the hostname and
platform type have been determined and cached results have been loaded, but before site
and platform specific files have been loaded and compilers to be used for testing have
been determined. Normally the bulk of the work is done by code in the tests section.
Epilog code is performed when the configuration process is nearly complete, right before
cleanup. The default is of course to locate the macro expanded text in the “ tests” part of
the generated configuration script, as most applications do not require prolog or epilog
sections.

Normal Macros
Additional passes made over the input are used to expand “normal” macros. Unlike

the argument processing and section macros, normal macros are not “built-into” the
autokonf script. At this time autokonf implements a very simple form of macro
processing; it simply translates macro references to function calls9.

The autokonf script repeatedly scans the text for a macro name: any upper case
identifier starting with AK_. When the autokonf script encounters such a macro name it
replaces the macro reference with a function call and picks-up the function definition

9 Earlier versions of autokonf implemented a more general form of macro expansion but it proved more difficult to use
and added little power to satisfy most of the perceived need.

Proceedings from the NECDC 2004

Reus, J. F.

from a text file. Since macro references are translated into function calls they should only
be used in the same syntactical context as a Perl function. The details are as follows:

1. The macro reference is replaced with a call to a function with the same name
but in lowercase. The macro reference:

AK_BANANA(“ peel ”) ;

Is replaced with the function call:
ak_banana(“ peel ”) ;

Note that the parameters are not modified. If the macro reference has no
parameters then the parentheses are optional. If there are none then the
autokonf will simply add empty parentheses.

For example the macro reference:
AK_CONST;

Is replaced with the function call:
ak_const () ;

2. If this is the first time the particular macro has been encountered then the
autokonf script looks for a text file whose name is simply the macro name
with the leading AK_ stripped away and shifted to lowercase. So when dealing
with the macro:

AK_CONST;

The autokonf script will attempt to locate a text file named const. Autokonf
will append the contents of this text file to the end of the text being scanned.
Note that the function implementing the macro may itself contain macro
references.

The following figure graphically illustrates how a normal macro is “expanded”:

Fig. 3

eof

 :
AK_BANANA(“ peel ”) ;
 :

eof

 :
ak_banana(“ peel ”) ;
 :

sub ak_banana {
 :
}

autokonf

 Change case

Calls

banana

Added

Proceedings from the NECDC 2004

Reus, J. F.

The macro expansion process is repeated until no identifiers starting with AK_ are
found. Note that the expansion process is cyclic since newly introduced functions may (an
frequently do) contain macro references. The expansion process is guaranteed to
terminate as the only way to introduce new macros references is when a macro is
expanded for the first time and the implementing function is added. Since there is a finite
number of macros available there will be a finite number of such functions added and so a
finite number of calls to expand. The autokonf tool need not check for macro expansion
cycles.

The macro expansion process may seem simple, and indeed it is, but it has proven
powerful enough to produce very capable configuration scripts. The build utility, a very
capable replacement for make, uses a configuration file generated by autokonf. Similarly
a configuration script has been produced using autokonf for ALE3D, a powerful parallel
engineering/physics code.

The simplicity of the scheme has proven a benefit as the autokonf development
process has been plagued with few bugs. It has also proven easy to understand, maintain
and to extend.

Normal Macros Supplied with autokonf
At this time over 100 predefined “normal” macros are supplied with autokonf:

AK_C_ANDORNOT; AK_JAVA_DUMP_SRC_LOG;
AK_C_BI GENDI AN; AK_JAVA_USED;
AK_C_CHAR_UNSI GNED; AK_JAVA_WORKS;
AK_C_CLEANUP; AK_LANG_C;
AK_C_CONST; AK_LANG_CXX;
AK_C_DASHED_TYPEOF; AK_LANG_F77;
AK_C_DUMP_SRC_LOG; AK_LANG_F90;
AK_C_ENDI AN; AK_LANG_RESTORE;
AK_C_I NCLUDE; AK_LANG_SAVE;
AK_C_I NCLUDE(filename, ...) ; AK_LI BRARY_PATH;
AK_C_I NLI NE; AK_LI BRARY_PATH(pathname, ...) ;
AK_C_LONG_DOUBLE; AK_MAX_I NT;
AK_C_PROTOTYPES; AK_MAX_LONG;
AK_C_STRI NGI ZE; AK_MAX_SHORT;
AK_C_TYPEOF; AK_MI N_I NT;
AK_C_USED; AK_MI N_LONG;
AK_C_WORKS; AK_MI N_SHORT;
AK_CACHE(variable, ...) ; AK_MSG_CHECKI NG(message) ;
AK_CACHE_SAVE; AK_MSG_CHECKI NG(message, result) ;
AK_CASE_SENSI TI VE_FI LESYSTEM; AK_MSG_RESULT(result) ;
AK_CHECK_FI LE(pathname, ...) ; AK_OUTPUT(filename) ;
AK_CHECK_HEADER(pathname, ...) ; AK_PARALLEL_SWI TCH;
AK_CHECK_HEADER(pathname, ... , [function, ...]) ;
AK_CHECK_LI BRARY(name) ; AK_PARALLEL_SWI TCH(pathname, ...) ;
AK_CHECK_LI BRARY(name, function) ; AK_PARALLEL_USED;
AK_CHECK_LI BRARY(name, [pathname, ...]) ; AK_PARAMDI R;
AK_CHECK_LI BRARY(name, function, [pathname, ...]) ;
AK_CHECK_PROG(name) ; AK_RETADROFS;
AK_CHECK_SI ZEOF(type) ; AK_RUN_COMMAND(command) ;
AK_CHECKI NG(message) ; AK_SEMUNI ON;
AK_CK_SEVERE; AK_STACKDI R;

Proceedings from the NECDC 2004

Reus, J. F.

AK_CK_TYPE(type, ...) ; AK_SUBST(name) ;
AK_CK_TYPES; AK_SUBST(name, variable) ;
AK_CPP_ELI F; AK_SUBST_FI LE(name, pathname) ;
AK_CXX_CLEANUP; AK_TRANSFORM(filename) ;
AK_CXX_DUMP_SRC_LOG; AK_TRANSFORM(filename, filename) ;
AK_CXX_DYNAMI C_CAST; AK_TRY_C_COMPI LE;
AK_CXX_USED; AK_TRY_C_COMPI LE(filename) ;
AK_CXX_WORKS; AK_TRY_C_LI NK;
AK_DUMP_LOG; AK_TRY_C_LI NK(objfile, ...) ;
AK_F77_CLEANUP; AK_TRY_C_RUN;
AK_F77_DUMP_SRC_LOG; AK_TRY_COMPI LE;
AK_F77_USED; AK_TRY_CXX_COMPI LE;
AK_F77_WORKS; AK_TRY_CXX_COMPI LE(filename) ;
AK_F90_CLEANUP; AK_TRY_CXX_LI NK;
AK_F90_DUMP_SRC_LOG; AK_TRY_CXX_LI NK(objfile, ...) ;
AK_F90_USED; AK_TRY_CXX_RUN;
AK_F90_WORKS; AK_TRY_F77_COMPI LE;
AK_FUNC_CLOSEDI R_VOI D; AK_TRY_F77_COMPI LE(filename) ;
AK_GNU_C; AK_TRY_F77_LI NK;
AK_H_DEFI NE(name) ; AK_TRY_F77_LI NK(objfile, ...) ;
AK_H_DEFI NE(name, value) ; AK_TRY_F77_RUN;
AK_H_DEFI NE_NO_PREFI X(name) ; AK_TRY_F90_COMPI LE;
AK_H_DEFI NE_NO_PREFI X(name, value) ; AK_TRY_F90_COMPI LE(filename) ;
AK_H_UNDEF(name) ; AK_TRY_F90_LI NK;
AK_H_UNDEF_NO_PREFI X(name) ; AK_TRY_F90_LI NK(objfile, ...) ;
AK_HEADER_DI RENT; AK_TRY_F90_RUN;
AK_HEADER_STAT; AK_TRY_LI NK;
AK_HEADER_STDBOOL; AK_TRY_RUN;
AK_I NTEL_C; AK_TYPE_PI D_T;

Most of the macros implement tests. They typically generate a source file, compile,
link, and sometimes execute it10. In this fashion some characteristic of the hardware or
software environment, or even a compiler characteristic may be detected. A different sort
of macro, such as AK_C_I NCLUDE, alter subsequent tests, in the case of the AK_C_I NCLUDE
macro, a specified header file is to be included in all subsequent tests using the C
compiler.

Some macros such as AK_H_DEFI NE and AK_H_UNDEF control how a detected
characteristic is to be placed in a generated header file11. Macros such as AK_SUBST
specify how the value of a configuration script variable is to replace an @NAME@ construct
when certain files12 are transformed at the end of the configuration process.

Writing New Macros
The simple form of macro expansion used by autokonf was chosen to make it easy to

implement new tests. All of the more than 100 normal macros supplied with the current
revision of autokonf use the simple macro expansion mechanism described above. To

10 Not all tests require the execution of a test program. A number of them simply require the source file to be compiled.
11 This header file is of course generated by the configuration script and is generally named config.h or konfig.h.
12 AK_TRANSFORM macros are used to specify the files to be transformed.

Proceedings from the NECDC 2004

Reus, J. F.

implement a new test a developer only needs to implement a Perl function which when
called examines its parameters and performs the test as indicated.

For example, consider the AK_C_CONST macro that tests the C compiler for support of
the const qualifier. This macro is typical of a test without parameters. A source file is
generated and compiled, if successful then it can be inferred that the C compiler supports
the const qualifier.

sub ak_c_const {
 my @par ams = @_;
 i f (0 <= $#par ams) {
 pr i nt STDERR “ $AK_scr i pt Name: t oo many par amet er s f or AK_” . ” C_CONST macr o \ n” ;
 exi t 1;
 }
 $AK_macDept h += 1;

 { my $how = “ ” ;
 my $ok = 0;
 AK_MSG_CHECKI NG(“ Checki ng f or C \ ” const \ ” qual i f i er ”) ;
 i f (! def i ned $ak_c_const _i sSuppor t ed) {
 $ak_c_const _i sSuppor t ed = 0;
 pr i nt AK_l ogFi l e __FI LE__, ” : ” , __LI NE__, ” [“ , AK_whoAmI () , ”] ” ,
 “ - – gener at e code t est i ng f or \ ” const \ ” \ n” ;
 i f (! open(AK_sr cFi l e, ” > konf t est . c”)) {
 pr i nt AK_l ogFi l e __FI LE__, ” : ” , __LI NE__, ” [“ , AK_whoAmI () , ”] ” ,
 “ - – can’ t cr eat e/ wr i t e \ ” konf t est . c\ ” \ n” ;
 }
 el se {
 pr i nt AK_sr cFi l e “ / * Gener at ed by macr o: AK_C_CONST * / \ n” ;
 i f (0 <= $#AK_i ncl udeFi l es) {
 my $i = 0; f or each $i (0 . . $#AK_i ncl udeFi l es) {
 my $header Fi l eName = $AK_i ncl udeFi l es[$i] ;
 pr i nt AK_sr cFi l e “ #i ncl ude <$header Fi l eName>\ n” ;
 }
 pr i nt AK_sr cFi l e “ \ n” ;
 }
 pr i nt AK_sr cFi l e “ const i nt zer o = 0; \ n” ;
 c l ose AK_sr cFi l e;
 $ok = 1;
 }
 i f ($ok) {
 i f (AK_TRY_C_COMPI LE) {
 $ak_c_const _i sSuppor t ed = 1;
 }
 el se {
 AK_C_DUMP_SRC_LOG;
 }
 AK_C_CLEANUP;
 }
 }
 el se {
 $how = “ (known) ” ;
 }
 i f ($ak_c_const _i sSuppor t ed) {
 AK_H_DEFI NE(“ SW_C_wi t h_const ”) ;
 AK_H_UNDEF(“ SW_C_wi t hout _const ”) ;
 AK_MSG_RESULT(“ suppor t ed$how”) ;
 }
 el se {
 AK_H_UNDEF(“ SW_C_wi t h_const ”) ;
 AK_H_DEFI NE(“ SW_C_wi t hout _const ”) ;
 AK_H_DEFI NE_NO_PREFI X(“ const ”) ;
 AK_MSG_RESULT(“ NOT suppor t ed$how”) ;
 }
 AK_CACHE(‘ $ak_c_const _i sSuppor t ed’) ;
 }
 $AK_macDept h - = 1;
 r et ur n $ak_c_const _i sSuppor t ed;
}

Of cour se t he act ual i mpl ement at i on shoul d be wel l comment ed.

No parameters

Announce the test

Supply include files

The meat of the test

Compile the test file

Create the
test file

Repor t success and deal with it

Repor t failure and deal with it

Proceedings from the NECDC 2004

Reus, J. F.

An Example Input Specification File
The following is a realistic example of an input configuration file; in fact it is the file

from which the configuration script for the build utility is generated.
i f (! AK_C_WORKS) {
 AK_announceMsg(" Requi r es wor ki ng C compi l er and l i nker ") ;
 exi t 1
}
i f (! AK_C_PROTOTYPES) {
 AK_announceMsg(" Requi r es C f unct i on pr ot ot ype suppor t ") ;
 exi t 1
}
i f (! AK_CPP_ELI F) {
 AK_announceMsg(" Requi r es C pr epr ocessor suppor t f or \ " #el i f \ " di r ect i ve") ;
 exi t 1
}

i f ($AK_enabl ed_debugMode) {
 $CC_SER_DBG_FLAGS = " $CC_SER_DBG_FLAGS –DBUI LD_DBG" ;
}

i f (! AK_CHECK_HEADER(" st di o. h")) {
 AK_announceMsg(" Requi r e st di o. h") ;
 exi t 1
}
i f (! AK_CHECK_HEADER(" sys/ t ypes. h")) {
 AK_announceMsg(" Requi r e sys/ t ypes. h") ;
 exi t 1
}
i f (AK_CHECK_HEADER(" i so646. h")) {
 AK_C_I NCLUDE(" i so646. h") ;
}
i f (AK_CHECK_HEADER(" i nt t ypes. h")) {
 AK_C_I NCLUDE(" i nt t ypes. h") ;
}
el se {
 i f (AK_CHECK_HEADER(" st di nt . h")) {
 AK_C_I NCLUDE(" st di nt . h") ;
 }
}
AK_CHECK_HEADER(" sys/ par am. h") ;
AK_CHECK_HEADER(" sys/ sysct l . h") ;
AK_CHECK_HEADER(" uni st d. h") ;
AK_CHECK_HEADER(" st dl i b. h" , [" abor t " , " mal l oc" , " f r ee"]) ;

AK_CK_TYPES;
AK_CK_TYPE(" si ze_t ") ;
AK_CK_SEVERE;
AK_C_TYPEOF;
AK_C_DASHED_TYPEOF;
AK_C_CONST;
AK_C_ANDORNOT;

AK_SUBST(" Bi nDi r " , " AK_pat hPr ef i xBi n") ;
AK_SUBST(" I ncl udeDi r " , " AK_pat hPr ef i xI ncl ude") ;
AK_SUBST(" Li bDi r " , " AK_pat hPr ef i xLi b") ;
AK_SUBST(" Ht ml Di r " , " AK_pat hPr ef i xHt ml ") ;
$Ht ml 1Di r = " $AK_pat hPr ef i xHt ml / ht ml 1" ; AK_SUBST(" Ht ml 1Di r ") ;

AK_OUTPUT(" . / konf i g. h") ;
AK_TRANSFORM(" makef i l e. i n" , " makef i l e") ;

AK_CACHE_SAVE;

Of course the actual file contains helpful comments. These have been removed so that
the contents fill fit a single page.

Proceedings from the NECDC 2004

Reus, J. F.

The Generated Per l Scr ipt
To provide some organization and to simplify code generation the Perl configuration

script generated by autokonf is arranged into a number of parts:

Part 0 – Basic initialization.
 1 – Initialization of defaults implied by any AK_ARG_ macros used.
 2 – Command line argument processing.
 3 – Extracting certain variables from the environment.
 4 – Fundamental tests: Is this a UNIX- or a Windows-like system?
 5 – Test shell and Perl interpreters.
 6 – Select a C compiler.
 7 – Identify host name and platform type.
 8 – Load the cache file if one exists.

 9 – The prolog code (if AK_SECTI ON_PROLOG macro was used).
 10 – Source the appropriate site and platform specific files.
 11 – Select compilers and set various compiler variables.
 12 – Deal with path prefix.

 13 – The macro processed testing code from konfigure.in including all
inser ted macro functions.

 14 – Code to emit the konfig.h file as specified by AK_OUTPUT macro.
 15 – Perform file transformations replacing all @NAME@ constructs in files

specified by AK_TRANSFORM macros.
 16 – Copy directory tree if “out-of-directory” configure is being performed.

 17 – The epilog code (if AK_SECTI ON_EPI LOG was used).
 18 – Cleanup.
 19 – Public built-in functions.
 20 – Built-in private functions.

Note that most of the parts are automatically generated by autokonf to deal with
problems common to all configurations scripts. They are of course generated with the
particular configuration issues in mind. For example generation of Perl code for the
selection of a C++ compiler and setting of C++ specific variables in parts 3 and 11 and
processing of C++ specific options in part 2 is only done if macros using C++ are
encountered in the specification file scanned by autokonf. Parts 9, 13, and 17 are drawn
directly from the specification file. Part 13 is where macro processed testing code lands
along with the appropriate functions implementing the macros.

Proceedings from the NECDC 2004

Reus, J. F.

Generated Files
In previous sections autokonf was described as a configuration script generator that

generates a single output file: a rather complex and portable Perl script. When given a
specification file such as configure.in as input, autokonf actually generates three output
files:

configure A Bourne-shell script; uses Perl to execute the configure.pl
script.

configure.exe A WIN32 binary executable; uses Perl to execute the
configure.pl script.

configure.pl The actual Perl configuration script as described in this
document.

This is done so that the configuration script may be invoked in the same fashion on
different platforms. For example the command:

conf i gur e –- enabl e- evpc

should work on a Windows platform just as well as on a UNIX or Linux platform. The
issue is how the system is to recognize that we want to use the Perl interpreter to run the
generated script. On a UNIX platform we can simply use a “sha-bang” line at the start of
the script to indicate that pathname of the interpreter to use.

#! / usr / bi n/ per l

The trouble is that the Perl interpreter is not installed in the same place on all systems and
the pathname must be given accurately. A number of schemes may be used to allow the
interpreter to be located using the PATH environment variable such as:

#! / bi n/ sh
per l –x –S $0 “ $@”
exi t
4 \ These l i nes ar e her e so l i ne
5 \ number s r epor t ed by Per l wi l l
6 \ be of f by exact l y 10 (t he l i ne
7 > number s ar e wr ong because of
8 / t he por t abl e way we ar e execut i ng
9 / t hi s scr i pt) .
#10 /
#! / usr / bi n/ per l

However this scheme only works on UNIX-like systems since it relies on the Bourne-
shell to find the Perl interpreter (note the first line). Windows-like platforms generally
rely on filename extensions along with “associations” to determine how a file is to be
executed.

Rather than depend on the host system having the proper association a different
scheme is used by autokonf. The Perl configuration script is invoked by a “ front-end”
supplied by autokonf. On a Windows-like platform a command such as “configure” is
generally expected to be a program in a file named command.exe. Actually the situation is
a bit more complex involving the PATH variable and associations but if a file named

Proceedings from the NECDC 2004

Reus, J. F.

configure.exe is located in the current directory or with a specified path then it will be
executed. On a UNIX-like platform a command such as configure is generally expected to
be implemented as a file named configure. Autokonf exploits this fundamental difference
by providing two front-end files: configure – a Bourne-shell script used by UNIX-like
systems to invoke the Perl interpreter on the real configuration script and configure.exe a
binary executable used on Windows-like systems to invoke the Perl interpreter.

Future Work
The autokonf configuration script generator is still in its fairly early stages of

development. While it is actually usable as it currently stands there remains more work to
be done:

• Implementation of most of the macros supplied with GNU autoconf.
Experience has shown that some of the GNU autoconf macros are not really
applicable to the autokonf environment.

• Provide true macro expansion in addition to the current model. While early
versions of autokonf supported such a mechanism, the implementation had
made it rather difficult to use. New mechanisms have been proposed that
should eliminate most of the problems encountered.

Acknowledgements
This work was performed under the auspices of the U.S. Department of Energy by the

University of California, Lawrence Livermore National Laboratory under contract No. W-
7405-Eng-48.

References
Bruegger, Bud. P., GNU autoconf Solves Only Part of the Problem. 12 Feb.

2002. <ht t p: / / f r eshmeat . net / ar t i c l es/ v i ew/ 146>.

DuBois, Paul, imake-Related Software and Documentation. 29 Nov. 2001.
<ht t p: / / www. snake. net / sof t war e/ i make- st uf f >.

DuBois, Paul, Software Portability with imake, (O’Reilly & Associates, 1994).

McCall, Andrew, Stop the autoconf insanity! Why we need a new build
system. 21 Jun. 2003. <ht t p: / / f r eshmeat . net / ar t i c l es/ v i ew/ 889>.

MacKenzie, David, GNU autoconf. 24 Dec. 2002. Fr ee Sof t war e Foundat i on.
<ht t p: / / www. gnu. or g/ sof t war e/ aut oconf >.

<http://www.cims.nyu.edu/cgi-comment/info2html?(autoconf.info)Why+Not+Imake>

